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ABSTRACT
Volume registration of articulated subjects such as the hu-

man knee region requires novel methods to accommodate the

wide range of movement resulting from skeletal joint rota-

tions. This paper addresses articulated volume deformation

with a pair of techniques. Volume skeletal deformation (VSD)

is applied first, producing a smooth but approximate deforma-

tion of the soft tissue as the underlying skeleton moves, while

preserving rigid motion in the segmented bone regions. The

resulting deformed volume is used as initialization for a non-

rigid deformation step that locally and adaptively adds radial

basis function control points to minimize the remaining regis-

tration error in any poorly aligned region. The resulting pro-

cess registers a neutral pose volume to any given bent-knee

pose MRI scan.

Index Terms— adaptive registration, non-rigid registra-

tion, articulation, volume deformation, MRI

1. INTRODUCTION

Articulated bodies such as the human knee have a wide range

of skeletal movements, resulting in large motion and deforma-

tions of the surrounding soft tissue. Quantifications and mea-

surements of such deformation is important for bio-medical

applications and clinical studies such as motion analysis of

patients suffering from arthritis.

The goal of quantifying the movement in a set of volume

scans can be approached with non-rigid volume registration.

Registration methods based only on the raw intensity data

have obvious benefits, since these methods operate directly on

the image intensity values without using any fiducial markers

or prior data reduction and segmentation by user [1, 2].

Non-rigid volume registration requires high degree of

freedom (DOF) warping functions for smooth, continuous,

and shear-free deformation of the soft-tissue volumes [3].

Rueckert et al. registered 3D breast MRIs while optimizing

normalized mutual information (MI) [4]. The initial locations

were positioned by rigid global affine transformations, and

the volumes were smoothly warped to the targets using opti-

mization of B-splines based free-form deformation (FFD).
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Although the B-splines create locally supported smooth

deformations, using a regular grid of control points results

in many DOF in optimization. Recently, adaptive registra-

tion has been studied to reduce DOFs and computation times.

Rohde et al. used the gradient of global mutual information

(MI) to find mismatching regions. Wu’s radial basis func-

tions (RBF) successfully supported smooth volume deforma-

tion using irregularly allocated sparse control points [5]. Lo-

cally measured normalized MI was used by Park et al. to iden-

tify highly mismatched regions requiring additional control

points [6]. The radial basis function formulation of thin plate

splines (TPS) was used for deformation. In this paper, their

efforts are successfully extended to handle articulated defor-

mation, using the VSD algorithm [7] as an initialization step.

Previous non-rigid registration studies have been gener-

ally focused on non-articulated subjects such as the brain [5,

6] and breast [4]. Articulated subjects involve a much wider

range of deformation, and are best approached with methods

that explicitly model the effect of movement of the underly-

ing bones. However, rigid transformation alone is not suffi-

cient to produce the desired smooth deformation, nor even to

provide an adequate initialization for non-rigid deformation

algorithms (Fig. 1).

Martin-Fernandez et al. presented elastic registration of

human hand X-rays using a 2D articulated registration ap-

proach. A simple wire model is manually created based on the

inner skeleton structure and the images are deformed based on

the weights calculated by a distance measure from the wire

[8]. Papademetris et al. presented a rigid body registration

method for serial lower-limb mouse CT images. They ad-

dressed the importance of the initialization step in intensity

based non-rigid body registration and present a method to ini-

tialize a model to any arbitrary posture [9]. Li et al. presented

articulated whole body registration of serial micro CT mouse

images. Pose initialization is accomplished using point-based

registration algorithms operating on the bone point clouds.

Skin surface deformation arising from articulated body

animation has been a major topic in surface-based computer

graphics. One widely used class of methods is that inspired by

the Skeletal Subspace Deformation or linear blend skinning

algorithm [10, 11]. Rhee et al. developed volume skeletal

deformation (VSD) which provides a practical solution to ar-
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Fig. 1. From left, (a) schematic source (neutral pose) scan, (b)

target pose, (c) rigid transformation does not provide adequate

initialization for non-rigid registration, (d) VSD produces an

approximate but suitable initialization (c.f. Fig. 3 (c)).

ticulated volume animation. VSD produces rigid bone move-

ment and smooth volumetric tissue deformation as the actual

segmented skeleton moves under intuitive user control [7].

Efficient intensity-based registration of volume scans

from articulated subjects is a challenging task, both because

of the many DOF involved and because the large range of

movement means registration targets are well outside the cap-

ture range of optimization approaches using downhill search.

For example, knee MRI volumes in different poses show

large differences between the source (straight-knee) volume

Vs and the target (bent-knee) volume Vt.

In this paper, we provide a practical solution to solve this

problem and show sufficient registration results using in vivo

3D MRI. The VSD algorithm is modified to produce an ini-

tial volume at a given target pose which may have large pose

differences from the source volume. Then, the initialized

source volume is continuously warped to the target volume

using adaptive non-rigid volume registration based on inten-

sity similarity optimization. Since it uses adaptively allocated

sparse control points in mismatched regions, the overall DOF

of volume registration is efficiently constrained.

2. ARTICULATED VOLUME INITIALIZATION

The volume skeletal deformation (VSD) algorithm [7] is im-

plemented for articulated volume pose initialization. The

VSD algorithm is based on the linear weighted blending of

affine transforms determined by each joint,

va = (
m∑

j=1

wjMj)vs (1)

where m is the number of joints, vs is a voxel in a source pose,

va is a deformed voxel in an arbitrary pose a, Mj is a homo-

geneous 4×4 transformation matrix that transfers joint j from

the source pose to an arbitrary pose in world coordinates, and

wj is a joint weight that defines the contribution of joint j’s

transformations to the deformation. The volumetric weight

map to define wj is computed using a generic surface model

and bone joint weights [7], and the transformation matrix Mj

that represents the target pose is estimated from the bone lo-

cations of the target volume. In the source knee volume, the

femur and tibia are manually segmented by a 2D graph cut al-

gorithm [12]. The segmented bones are then registered to the

target volume using intensity based rigid volume registration

minimizing the squared sum of intensity differences (SSID),

min
Mj

|Is(MjVj) − It(Vt)|2 (2)

where Is is the intensity of bone volume Vj transferred by

matrix Mj , and It is the intensity of target volume. Although

MI would be better for multi-modal images, since we have a

single modality, SSID is adequate for our initialization.

3. ADAPTIVE NON-RIGID REGISTRATION

After articulated initialization, the task turns out to be a prob-

lem of non-rigid volume registration. We define a cost func-

tion to minimize mismatch between volumes as,

min
f

S(V l
s , V l

t + T (V l
t , c, f)), for all levels l (3)

where S is a similarity measure such as SSID or MI (in case

of MI the value should be maximized), V l
s is a source vol-

ume at level l, V l
t is a target volume at level l, T is a warping

function to determine the needed additional deformation of

volume Vt, c is a control point vector assigned at the target

volume frame, f is the displacement value of the related con-

trol point (c, f are discussed further below) and l is the level of

a multi-resolution volume that is constructed from the origi-

nal volume to speed up processing and avoid local minimum.

For registration of a large volume, the DOF of vector c
and f should be constrained. In order to decrease DOF, con-

trol points are adaptively allocated in regions of large mis-

match. Therefore, the deformation function T should allow

sparse irregular control points and their displacement values.

Given a set of irregular feature locations (control points) c
= {c1, ..., cn} and their values f = {f1(c1), ..., fn(cn)} we

can find a function R(x) which gives smooth interpolation of

these feature values using radial basis functions (RBFs) [13].

R(x) = P (x) +
n∑

i=1

λiφ(|x − ci|) (4)

We choose the RBFs to determine the deformation function

T , where P (x) is a low-degree polynomial, λi is a real valued

weight, φ is a basis function, x is an arbitrary 3D location,

|x − ci| is the Euclidian distance between x and ci, and fi is

the displacement value at ci. For the basis function, the 3D

thin plate spline (TPS) φ(r) = |r| is chosen for smooth and

continuous deformation, since the TPS interpolates specified

values while minimizing an approximate curvature [14].

The control points of the RBFs are adaptively assigned,

increasing DOF only in areas of local dissimilarity [6]. Each

target volume V l
t is hierarchically divided into multiple cells

with the hierarchy level denoted b; the coarsest level bmin

contains 2x2x2 cells. The maximum number of cells at the

finest level bmax is constrained by the resolution of the V l
t to
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control the total number of control points; e.g. volumes hav-

ing larger than 64x64x64 resolution can have 16x16x16 cells

at level bmax. If the size of a cell is too small, the histogram-

based local MI measure by Park et al. [6] may not be accurate.

In this case, SSID is used since all our scans have the same

modality.

In every cell at level b (b ∈ bmin . . . bmax), whenever the

similarity measure of each cell is less than a given threshold,

a control point ci (ith point) is added at the center of the cell

in the target volume space and the value fi is initialized by

the RBF deformation T defined by the previous c and f. Af-

ter increasing the DOF of c and f, the cost function in equa-

tion (3) is optimized with respect to f, producing the desired

displacement value for each control point. If the cost is not

decreased enough during optimization or the SSID of all cells

are larger than a given threshold, the cell level b is increased

(up to bmax). Because TPS interpolation is global, it is also

necessary to ensure that the added local deformations do not

influence regions that are already well aligned. Thus, at cell

level bmin, a control point is assigned at the center of each

cell (eight total) and a similar number of control points are al-

located at iso-surfaces of each bone volume which have been

segmented and initialized in section 2.

4. RESULTS

Sufficiently different poses of knee MRI volumes were cap-

tured from a male volunteer. A GE Signa Excite 3.0 T scanner

with gradients capable of 40 mT/m amplitude and 150 T/m/s

slew rate was used. The data set for each volume is approxi-

mately 136x256x256 and the spatial resolution of each voxel

is 1.25x1.25x1.2 (mm3). Two different tests were performed

to show the robustness of our methods.

First, we registered synthetically posed volumes with

small pose variations and no articulated VSD initialization,

in order to verify the adaptive non-rigid registration in a

setting where the ground truth is known. Voxels identified

to be inside the base volume Vs are stored in a separate

one-dimensional list termed the representative volume. The

representative volume is bent 10 degrees using the VSD algo-

rithm to create a target arbitrary pose. The deformed irregular

voxels are then re-sampled from Vs to construct target volume

Vt. Since the geometric topology between representative vol-

umes is the same, the registration error can be measured using

the Euclidean norm between the two representative volumes.

The result of adaptive non-rigid registration is shown in

figure 2. The total number of allocated control points is small

(less than 30) and they are shown in the Fig. 2 (c); blue dots

show control points in the target space, red dots show cor-

respondences in the source space, and lines show the dis-

placements. Since hierarchical multi-resolution volumes are

used, the largest differences are minimized while registering

the coarse resolution volume. Therefore, the displacement

values are decreasing with increasing resolution; Fig. 2 (c)

(a) Source volume (b) Target volume

(c) Control points (d) Registration

Fig. 2. 3D registration of synthetic ground truth data without

VSD pose initialization.

is the result for a 34x64x64 resolution volume. The mean

Euclidean distance between the source and target volume is

reduced from 10.5 to 3.2 (mm3). The correlation of the two

image volumes is improved from 0.54 to 0.95. 99.8% of regis-

tered representative voxels are located within a four voxel dis-

tance of the (known) target voxel and 87% are within two vox-

els; refer the voxel spatial resolution. Although the knee vol-

ume was just bent 10 degrees, the difference between the vol-

umes is relatively large compared with non-articulated sub-

jects such as the brain and breast. The registration algorithm

shows accurate results with small numbers of control points

considering that intensity values were approximated using tri-

linear interpolation.

Next, we registered real 3D knee MRIs with significantly

different poses. A source volume is manipulated to the target

pose using the VSD articulated volume initialization (Fig. 3

(c)). The initialized volume then registered to the target vol-

ume using the adaptive non-rigid registration method. The

registration result is shown in Fig. 3 (d) and visually validated

in Fig. 3 (f); red dots show the registered source voxel grids

on a slice of the target volume shown in gray. Around 22 con-

trol points are adaptively assigned. The control points, corre-

sponding points, and their displacement values are shown in

Fig. 3 (e); the sub-volume resolution is 68x128x128.

5. CONCLUSION

A practical solution to register MRI scans from an articulated,

moving subject is presented and demonstrated on the human
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(a) Source volume (b) Target volume

(c) Initialization (d) Registration

(e) Control points (f) Comparison

Fig. 3. 3D registration of real 3D MRI knee scans.

knee region. Articulated volume initialization based on the

VSD algorithm produces good initial poses for non-rigid reg-

istration. The initialized volume is then aligned to the target

volume using non-rigid volume registration with adaptively

allocated sparse control points. The results are tested on in

vivo 3D knee MRIs and show robust results even among vol-

umes with significantly different poses.

Based on the articulated characteristics of the in vivo sub-

ject, we encountered some problems which have not been

common issues in the previous registration studies. Since

the subject’s pose is changing, the body region covered by

each scan can be different, and regions existing only in a sin-

gle scan cannot contribute to the registration and cause slow

optimization. In order to reduce discomfort during scans,

the patient laid facing upward and supported by some casts.

Therefore, the soft-tissue volume on the back side is com-

pressed. Although our articulated volume initialization could

approximate muscle bulging, soft tissues compressed by pa-

tient weight could not be restored. If MRI volumes were cap-

tured in some specific poses considering these issues, better

results can be achieved. However, the trade off between ideal

data and patient comfort may be a good discussion issue in

this study.
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